Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer death worldwide. No more than 30% of HCC patients are considered suitable for curative treatment because of tumor size and severity of liver impairment, among other factors. Radiofrequency ablation (RFA) monotherapy can cure small (≤3 cm) HCC tumors. An adjuvant that interacts synergistically with RFA might enable curative therapy for many HCC patients with lesions >3 cm. Lyso-thermosensitive liposomal doxorubicin (LTLD) consists of the heat-enhanced cytotoxic doxorubicin within a heat-activated liposome. LTLD is infused intravenously prior to RFA. When heated to >39.5°C, LTLD releases doxorubicin in high concentrations into the tumor and the tumor margins. The RFA plus LTLD combination has shown a statistically significant dose–response effect for time to treatment failure in a Phase I trial in which most subjects (62.5%) had tumors >3 cm. RFA plus LTLD is currently being evaluated in a 600-patient randomized, double-blind, dummy-controlled trial.

Lyso-thermosensitive liposomal doxorubicin (LTLD; ThermoDox® [Celsion Corp., MD, USA]) is designed for use with RFA and consists of the heat-enhanced cytotoxic anthracycline antibiotic doxorubicin within a heat-activated liposome. This article reviews the rationale and preliminary clinical data of its combined use with RFA for liver cancer and discusses its potential role in the future oncological treatment of HCC.
Rationale

A review of 13 published trials of single-agent doxorubicin among 644 HCC patients found an objective response rate of 19% and median overall survival of 4 months [12]. In subsequent randomized trials comparing overall survival, single-agent doxorubicin has been found to be superior to no anticancer treatment [13], equivalent to combination chemotherapy with cisplatin, IFN-α-2b, doxorubicin and fluorouracil [14] and superior to single-agent nolatrexed [15]. However, systemic doxorubicin has not become a standard treatment for HCC due to its relatively high incidence of severe toxicity, including congestive heart failure and neutropenia [13–15].

Lyso-thermosensitive liposomal doxorubicin is administered intravenously but, because it is a liposome, rapidly concentrates in the liver and spleen [16]. Since LTLD is larger than free doxorubicin, it is over 1000-times less permeable across normal blood vessels than free doxorubicin, offering less potential for systemic toxicity. However, tumors have much higher microvascular permeability than normal blood vessels, so LTLD is able to accumulate in tumors [16,17]. In addition, hyperthermia has been shown to preferentially increase liposomal permeability within the microvasculature in tumor versus normal tissue. Hyperthermia has a biological effect of increasing the pore size in tumor blood vessels, and therefore enhancing the extravasation of liposomes into the tumor interstitium. Studies demonstrated that tumors that were impermeable to liposomes at 34°C had significant extravasation and thus increased permeability at 42°C. The optimal liposome size for heat-induced extravasation was found to be 100 nm (the mean diameter of LTLD). The same effect was not observed in normal tissue [18,19]. Therefore, it can be hypothesized that hyperthermia induces preferential extravasation of liposomes in tumor tissue compared with healthy tissue. The benefits of hyperthermia with thermosensitive liposomes for the delivery of chemotherapeutic agents are twofold: enhanced localization of the liposomes into the tumor interstitium, coupled with a triggered and rapid release of the drug in the tumor and the tumor vasculature.

Within 30 s of exposure to temperatures of ≥39.5°C, LTLD releases its doxorubicin content, creating a large concentration gradient of doxorubicin around the zone of RFA-induced tumor cell necrosis. Preclinical studies found that at temperatures of ≥39.5°C, LTLD produces doxorubicin tumor concentrations up to 15-fold greater than free (nonliposomal) doxorubicin administered at the same doses [Celsion Corp., Unpublished Data]. The doxorubicin then kills any tumor cells adjacent to the ablation zone, providing more successful treatment of HCC lesions >3 cm than thermal ablation alone. In vitro studies have repeatedly shown enhancement of cell killing when doxorubicin is combined with hyperthermia compared with doxorubicin without hyperthermia [20–31]. This enhancement has been attributed to the ability of hyperthermia to increase intracellular retention of chemotherapeutic agents by upregulating their influx [20,26].

Overview of strategies to improve RFA treatment for HCC

Box 1 summarizes initiatives to increase the HCC cure rate by combining another therapy with RFA. This article will not deal with proposals to increase the efficacy of RFA alone (e.g., better guidance with contrast-enhanced ultrasound, fusion imaging or robotics; redesigning RFA electrodes; or improving treatment algorithms to magnify the ablation zone) [32–34]. One approach aims to improve the cure rate in multifocal disease by performing surgical resection on resectable tumors and RFA on unresectable lesions [35]. A strategy for tumors >3 cm is to perform transarterial chemoembolization (TACE) to downsize the tumors so they are more curable with RFA [36]. Thus far, randomized trial findings for this combination are modest. Morimoto et al. randomized 37 patients with solitary medium (3.1–5.0 cm) HCC lesions to RFA plus TACE or RFA alone [37]. After 3 years, the RFA plus TACE group had a statistically significant advantage in local tumor control, but not in overall survival. Wang et al. randomized 83 patients, of whom 59% had lesions >3 cm, to RFA plus TACE or RFA alone [38]. The RFA plus TACE group had a statistically significant advantage in ‘quality of life’, but not in recurrence rate. Yang et al. randomized 36 patients with large (>5 cm) HCC lesions to RFA plus TACE or RFA alone [39]. The two groups did not differ significantly in either relapse rate or overall survival. A frequent suggestion for tumors >3 cm in the literature is to perform RFA and then to administer a systemic treatment to eradicate any residual tumor. Therapy with interferon [40,41], sorafenib (or other molecularly targeted agents once available) [42–44] and vitamin A or vitamin K analogs [45] have been recommended. In the simultaneous RFA plus LTLD approach, LTLD is administered systemically but rapidly concentrates in the liver, where it acts synergistically with RFA.
Introduction to LTLD

Chemistry

Lyso-thermosensitive liposomal doxorubicin is the first heat-activated formulation of liposomal doxorubicin. The active drug in LTLD is doxorubicin hydrochloride. Doxorubicin consists of a naphthacenequinone nucleus linked through a glycosidic bond at ring atom 7 to an amino sugar, daunosamine. The chemical formula is C_{27}H_{26}NO_{11} HCl and the molecular weight is 579.99 Da. LTLD combines doxorubicin with lyso-thermosensitive liposomes that are made from three synthetic phospholipids: 1,2-dipalmityl-sn-glycero-3-phosphocholine, 1,2-distearyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene)-glycol-2000. LTLD is manufactured as stable doxorubicin-loaded liposomes, which are stored as a frozen solution [Celsion Corp., Unpublished Data].

Pharmacodynamics

For single LTLD doses, the plasma half-life (mean ± standard deviation of 24 patients) is 18.52 ± 8.36 h. Initial evaluation of two cycles of LTLD, 21 days apart, suggests that there does not appear to be any appreciable accumulation of doxorubicin between LTLD infusions [Celsion Corp., Unpublished Data].

Pharmacokinetics & metabolism

The major portion of exposure to LTLD (~95%) of the liposomal doxorubicin plasma area under the curve (AUC) occurs during the first 6 h following the infusion, establishing this time period as optimal for application of RFA. Most of the free doxorubicin exposure also occurs during the first 6 h (87.9% of the free doxorubicin AUC). Free doxorubicin represents 43.6% of the total doxorubicin AUC. For both liposomal and free doxorubicin, maximum plasma concentration occurs just before the end of the 30-min infusion [Celsion Corp., Unpublished Data].

Clinical efficacy

Phase I studies

A 24-subject trial (nine with HCC and 15 with metastatic liver tumors from nine other primary sites) has been completed. A total of 15 (62.5%) of the 24 subjects had tumors >3.0 cm [Celsion Corp., Unpublished Data]. Treatment failure was operationally defined as objective disease progression and/or initiation of an alternative anticancer therapy. There was a statistically significant (p = 0.038) LTLD dose–response effect: median time to treatment failure for patients receiving at least the maximum tolerated dose of 50 mg/m² was 374 days, while that for patients receiving less than 50 mg/m² was 80 days. Time to treatment failure was significantly associated with LTLD dose but not with tumor size (≤3 cm or >3 cm), tumor type (HCC or metastatic liver cancer) or RFA type (open surgical or percutaneous) (Table 1). There were three subjects at the 60 mg/m² dose level. None of these three subjects experienced treatment failure; they were censored at 122, 283 and 337 days. Furthermore, there were four subjects with tumors >5 cm in the trial. Of these, the two subjects treated at <50 mg/m² experienced treatment failure at 25 and 93 days, respectively, while the two subjects treated at ≥50 mg/m² experienced treatment failure at 261 and 374 days, respectively [Celsion Corp., Unpublished Data]. These very limited data in large liver lesions are again suggestive of a LTLD dose–response relationship.

Phase II studies

Owing to promising Phase I results, the developers of LTLD worked with the US FDA and proceeded directly into Phase III testing.
Phase III studies
A randomized, double-blind, dummy-controlled, multicenter Phase III trial (HEAT study) is underway, comparing RFA/LTLD with RFA alone among 600 patients with unresectable HCC. Child–Pugh class A or B patients are eligible, except that both ascites and encephalopathy are exclusionary. Eligible patients can have no more than four HCC lesions with at least one ≥3.0 cm and none >7.0 cm in maximum diameter. However, if a patient has a large lesion (5.0–7.0 cm), any other lesions must be less than 5.0 cm. In both arms, RFA may be performed percutaneously, laparoscopically or surgically, per the investigators’ clinical judgment. Patients in the combination arm will receive a single 30-min intravenous infusion of LTLD at 50 mg/m², starting 15 min before RFA; the RFA-only arm patients will receive a dummy infusion. Progression-free survival is the primary end point. Secondary end points include overall survival, time to local recurrence and time to a clinically significant deterioration in patient self-reported symptoms. The National Cancer Institute of the USA has recommended the HEAT study as a priority clinical trial for HCC [46].

Safety & tolerability
The maximum tolerated dose of LTLD was determined to be 50 mg/m² in the Phase I trial, based on two dose-limiting toxicities (grade 3 alanineaminotransferase increase and grade 4 neutropenia) at a dose of 60 mg/m² [Celsion Corp., Unpublished Data]. LTLD was not associated with either hand–foot syndrome or with congestive heart failure. The most common LTLD grade 3+ adverse events (affecting ≥5% of patients) were alopecia (36.4%), neutropenia (32.7%), leukopenia (20.0%), decreased hemoglobin (18.2%), fatigue (14.5%), nausea (10.9%), thrombocytopenia (9.1%), decreased ejection fraction (9.1%), anorexia (7.3%), taste alteration (5.5%) and fever (5.5%) (Table 2). All of the

Table 1. Phase I radiofrequency ablation/lyso-thermosensitive liposomal doxorubicin time to treatment failure by primary site, tumor size, radiofrequency ablation type and lyso-thermosensitive liposomal doxorubicin dose.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Failed</th>
<th>Censored</th>
<th>Median TTF (days)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>7</td>
<td>2</td>
<td>355</td>
<td>0.2227</td>
</tr>
<tr>
<td>Other*</td>
<td>13</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tumor size†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤3.0 cm</td>
<td>6</td>
<td>2</td>
<td>156</td>
<td>0.4135</td>
</tr>
<tr>
<td>>3.0 cm</td>
<td>14</td>
<td>1</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>RFA type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open surgical</td>
<td>6</td>
<td>1</td>
<td>188</td>
<td>0.4315</td>
</tr>
<tr>
<td>Percutaneous</td>
<td>14</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>LTLD dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 mg/m²</td>
<td>15</td>
<td>0</td>
<td>80</td>
<td>0.0380</td>
</tr>
<tr>
<td>≥50 mg/m²</td>
<td>5</td>
<td>4</td>
<td>374</td>
<td></td>
</tr>
</tbody>
</table>

Source data are from the clinical study report [Celsion Corp., Unpublished Data] and were extracted as of 5 February 2008. Treatment failure is operationally defined as disease progression and/or initiation of an alternative anticancer therapy. This is a conservative way to assess efficacy, since the 15 patients with other primary sites might progress and/or begin alternative treatment for that primary or for a baseline metastatic site other than the liver. Patients not experiencing treatment failure are censored as of their last reported on-study date. For each factor, TTFs are computed by the product-limit method [48] and compared by the two-tailed log-rank test [49]. No adjustments are made for multiple comparisons.

*There were a total of nine other primary sites.
†The maximum tumor diameter for one patient was not reported.
‡LTLD: Lyso-thermosensitive liposomal doxorubicin; RFA: Radiofrequency ablation; TTF: Time to treatment failure.
Table 2. Frequency listing of adverse events while on lyso-thermosensitive liposomal doxorubicin.

<table>
<thead>
<tr>
<th>AE</th>
<th>Lyso-thermosensitive liposomal doxorubicin (n = 55)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any AE, n (%)</td>
</tr>
<tr>
<td>Metabolic/laboratory symptoms</td>
<td></td>
</tr>
<tr>
<td>AST, serum glutamic oxaloacetic transaminase</td>
<td>28 (50.9)</td>
</tr>
<tr>
<td>ALT, serum glutamic pyruvic transaminase</td>
<td>28 (50.9)</td>
</tr>
<tr>
<td>Serum albumin – low (hypoalbuminemia)</td>
<td>10 (18.2)</td>
</tr>
<tr>
<td>Serum sodium – high (hypernatremia)</td>
<td>7 (12.7)</td>
</tr>
<tr>
<td>Serum potassium – high (hyperkalemia)</td>
<td>6 (10.9)</td>
</tr>
<tr>
<td>Creatine phosphokinase</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Serum glucose – high (hyperglycemia)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Serum phosphate – low (hypophosphatemia)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Serum potassium – low (hypokalemia)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
</tr>
<tr>
<td>Neutropenia/granulocytopenia (ANC/AGC)</td>
<td>18 (32.7)</td>
</tr>
<tr>
<td>Decreased hemoglobin</td>
<td>13 (23.6)</td>
</tr>
<tr>
<td>Leukocytes (decrease in total WBCs)</td>
<td>11 (20.0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>9 (16.4)</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>12 (21.8)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>8 (14.5)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7 (12.7)</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (10.9)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Mucositis/stomatitis oral cavity</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Taste alteration (dysgeusia)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Constitutional symptoms</td>
<td></td>
</tr>
<tr>
<td>Fatigue (asthenia, lethargy and malaise)</td>
<td>14 (25.5)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>7 (12.7)</td>
</tr>
<tr>
<td>Fever (without neutropenia)</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Alopecia</td>
<td>21 (38.2)</td>
</tr>
<tr>
<td>Pain</td>
<td></td>
</tr>
<tr>
<td>Abdomen NOS</td>
<td>10 (18.2)</td>
</tr>
<tr>
<td>Joint</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Back</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Bone</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Extremity – limb</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Muscle</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Chest/thorax NOS</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Throat/pharynx/larynx</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td></td>
</tr>
<tr>
<td>Bilirubin (hyperbilirubinemia)</td>
<td>9 (16.4)</td>
</tr>
</tbody>
</table>

AE: Adverse event; AGC: Absolute granulocyte count; ALT: Alanine aminotransferase; ANC: Absolute neutrophil count; AST: Aspartate aminotransferase; NOS: Not otherwise specified; WBC: White blood cell.

Data taken from [Celsion Corp., Unpublished Data].
ejection fraction decreases were drug-related but none were serious or grade 3+ [Celsion Corp., Unpublished Data]. These drug-related events are consistent with the adverse event profile of systemic doxorubicin. As noted earlier, with RFA plus LTLD therapy, high concentrations of doxorubicin are deposited in tumors, but some is released to circulate as free doxorubicin.

Conclusion & future perspective

As LTLD is a liposome, it rapidly concentrates in the liver, where it permeates HCC lesions and their vasculature. The heat of RFA further enhances this process and very quickly releases doxorubicin in the heated area. At the same time, hyperthermia increases the cytotoxicity of doxorubicin, producing a synergistic interaction.

If its curative and synergistic potential is borne out in the Phase III HEAT study, a rational future strategy for HCC lesions >3 cm is to incorporate LTLD into RFA as a targeted approach.

Table 2. Frequency listing of adverse events while on lyso-thermosensitive liposomal doxorubicin.

<table>
<thead>
<tr>
<th>AE</th>
<th>Lyso-thermosensitive liposomal doxorubicin (n = 55)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any AE, n (%)</td>
</tr>
<tr>
<td>Pulmonary/upper respiratory disorders</td>
<td></td>
</tr>
<tr>
<td>Dyspnea (shortness of breath)</td>
<td>7 (12.7)</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
</tr>
<tr>
<td>Urinary tract NOS</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Hepatobiliary infection</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Renal/genitourinary disorders</td>
<td></td>
</tr>
<tr>
<td>Urinary retention</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Bladder spasms</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Incontinence, urinary</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Urinary NOS</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>General cardiac symptoms</td>
<td></td>
</tr>
<tr>
<td>Decreased ejection fraction</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Musculoskeletal symptoms</td>
<td></td>
</tr>
<tr>
<td>Muscle weakness – generalized</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Lymphatic disorders</td>
<td></td>
</tr>
<tr>
<td>Edema – limb</td>
<td>4 (7.3)</td>
</tr>
<tr>
<td>Neurological disorders</td>
<td></td>
</tr>
<tr>
<td>Mood alteration: depression</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>4 (7.3)</td>
</tr>
</tbody>
</table>

AEs occurring in at least 5% of patients (liver, breast or prostate cancer) treated with lyso-thermosensitive liposomal doxorubicin using targeted application of heat, either by radiofrequency ablation or microwave (as of 1 April 2008).

AE: Adverse event; AGC: Absolute granulocyte count; ALT: Alanine aminotransferase; ANC: Absolute neutrophil count; AST: Aspartate aminotransferase; NOS: Not otherwise specified; WBC: White blood cell.

Data taken from [Celsion Corp., Unpublished Data].
employ RFA plus LTLD as a front-line therapy. TACE, sorafenib or another molecularly targeted agent, or one of the other investigational RFA-based combination therapies, can be used as second-line or third-line treatments, if needed.

Plans to study combinations of LTLD with other thermal ablative modalities such as high-intensity focused ultrasound are being contemplated. The RFA plus LTLD combination also has great potential as a front-line therapy for colorectal liver metastases, but this requires a separate clinical trial.

Financial & competing interests disclosure

N Borys is the Chief Medical Officer for Celsion Corp. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Writing assistance was utilized in the production of this manuscript. The authors would like to acknowledge William L Simonich, a staff medical writer at Celsion Corp., who helped with the writing of this manuscript.

Bibliography

Website