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Hepatocellular carcinoma (HCC) is the fourth 
leading cause of cancer death worldwide [101]. 
Surgical resection is the mainstay of curative 
treatment. However, no more than 30% of HCC 
patients are considered suitable for surgical treat-
ment because of tumor size, multifocal tumors, 
vascular invasion, presence of extrahepatic metas-
tases and/or extensive liver impairment. The 
majority of patients with HCC have underlying 
cirrhosis, most commonly due to hepatisis B or 
C viral infection, which may restrict the feasibil-
ity of surgical resection even with small tumors. 
Liver transplantation is an alternative curative 
treatment, but its application is limited by a severe 
shortage of liver graft donors. Thermal ablation 
modalities such as radiofrequency ablation (RFA), 
microwave ablation and high-intensity focused 
ultrasound have emerged as important treatment 
options for such patients in recent years [1].

During RFA, radiofrequency waves emitted 
from an electrode inserted into the tumor induce 
vibration of ions in the cancer cells, which causes 
frictional heat and thermal coagulative necrosis of 
the cells. RFA monotherapy is a curative treatment 
for HCC tumors ≤3 cm. It is a safe treatment with 
a morbidity rate of less than 10% and a mortality 
rate of approximately 0.5% [2]. It is the most com-
monly used treatment for patients with small HCC 

associated with significant cirrhosis not suitable for 
resection. Whether it can replace resection as the 
treatment of small HCC in patients with good 
liver function remains controversial. A random-
ized trial has shown that RFA can achieve long-
term survival rates for small HCC that are similar 
to resection [3], but a more recent randomized trial 
demonstrated that survival and recurrence rates 
were better with resection than RFA [4]. The effi-
cacy of RFA is significantly influenced by tumor 
size. For patients with lesions too big to be treated 
within a single ablation zone (those with lesions 
>3 cm, approximately half of the HCC popula-
tion), RFA is much more likely to leave viable 
tumor cells in the margins or clefts of overlapping 
ablation zones. Local recurrence rates after RFA 
for tumors ≤3 cm are reported to be ≤20% [5–9]; 
however, for tumors >3 cm, local recurrence rates 
of ≥40% have been observed [10,11].

Lyso-thermosensitive liposomal doxorubicin 
(LTLD; ThermoDox® [Celsion Corp., MD, 
USA]) is designed for use with RFA and consists 
of the heat-enhanced cytotoxic anthracycline 
antibiotic doxorubicin within a heat-activated 
liposome. This article reviews the rationale and 
preliminary clinical data of its combined use with 
RFA for liver cancer and discusses its potential 
role in the future oncological treatment of HCC.
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Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer death 
worldwide. No more than 30% of HCC patients are considered suitable for 
curative treatment because of tumor size and severity of liver impairment, among 
other factors. Radiofrequency ablation (RFA) monotherapy can cure small 
(<3 cm) HCC tumors. An adjuvant that interacts synergistically with RFA might 
enable curative therapy for many HCC patients with lesions >3  cm. Lyso-
thermosensitive liposomal doxorubicin (LTLD) consists of the heat-enhanced 
cytotoxic doxorubicin within a heat-activated l iposome. LTLD is infused 
intravenously prior to RFA. When heated to >39.5°C, LTLD releases doxorubicin in 
high concentrations into the tumor and the tumor margins. The RFA plus LTLD 
combination has shown a statistically significant dose–response effect for time 
to treatment failure in a Phase I trial in which most subjects (62.5%) had tumors 
>3 cm. RFA plus LTLD is currently being evaluated in a 600‑patient randomized, 
double-blind, dummy-controlled trial.
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Rationale
A review of 13 published trials of single-agent 
doxorubicin among 644 HCC patients found 
an objective response rate of 19% and median 
overall survival of 4 months [12]. In subsequent 
randomized trials comparing overall survival, 
single-agent doxorubicin has been found to be 
superior to no anticancer treatment [13], equiva-
lent to combination chemotherapy with cisplatin, 
IFN‑a-2b, doxorubicin and fluorouracil [14] and 
superior to single-agent nolatrexed [15]. However, 
systemic doxorubicin has not become a standard 
treatment for HCC due to its relatively high 
incidence of severe toxicity, including congestive 
heart failure and neutropenia [13–15].

Lyso-thermosensitive liposomal doxorubicin 
is administered intravenously but, because it is 
a liposome, rapidly concentrates in the liver and 
spleen [16]. Since LTLD is larger than free doxoru-
bicin, it is over 1000‑times less permeable across 
normal blood vessels than free doxorubicin, offer-
ing less potential for systemic toxicity. However, 
tumors have much higher microvascular per-
meability than normal blood vessels, so LTLD 
is able to accumulate in tumors  [16,17]. In addi-
tion, hyperthermia has been shown to prefer-
entially increase liposomal permeability within 
the microvasculature in tumor versus normal 
tissue. Hyperthermia has a biological effect of 
increasing the pore size in tumor blood vessels, 
and therefore enhancing the extravasation of 
liposomes into the tumor interstitium. Studies 
demonstrated that tumors that were impermeable 
to liposomes at 34°C had significant extravasa-
tion and thus increased permeability at 42°C. 
The optimal liposome size for heat-induced 
extravasation was found to be 100  nm (the 
mean diameter of LTLD). The same effect was 
not observed in normal tissue [18,19]. Therefore, it 
can be hypothesized that hyperthermia induces 
preferential extravasation of liposomes in tumor 
tissue compared with healthy tissue. The benefits 
of hyperthermia with thermosensitive liposomes 
for the delivery of chemotherapeutic agents are 
twofold: enhanced localization of the liposomes 
into the tumor interstitium, coupled with a trig-
gered and rapid release of the drug in the tumor 
and the tumor vasculature. 

Within 30 s of exposure to temperatures of 
≥39.5°C, LTLD releases its doxorubicin con-
tents, creating a large concentration gradient of 
doxorubicin around the zone of RFA-induced 
tumor cell necrosis. Preclinical studies found 
that at temperatures of ≥39.5°C, LTLD pro-
duces doxorubicin tumor concentrations up 
to 15-fold greater than free (nonliposomal) 

doxorubicin administered at the same doses 
[Celsion Corp., Unpublished Data]. The doxorubicin 
then kills any tumor cells adjacent to the abla-
tion zone, providing more successful treatment 
of HCC lesions >3 cm than thermal ablation 
alone. In vitro studies have repeatedly shown 
enhancement of cell killing when doxorubicin 
is combined with hyperthermia compared with 
doxorubicin without hyperthermia [20–31]. This 
enhancement has been attributed to the ability 
of hyperthermia to increase intracellular reten-
tion of chemotherapeutic agents by upregulating 
their influx [20,26]. 

Overview of strategies to improve RFA 
treatment for HCC

Box 1 summarizes initiatives to increase the HCC 
cure rate by combining another therapy with 
RFA. This article will not deal with proposals 
to increase the efficacy of RFA alone (e.g., bet-
ter guidance with contrast-enhanced ultrasound, 
fusion imaging or robotics; redesigning RFA 
electrodes; or improving treatment algorithms to 
magnify the ablation zone) [32–34]. One approach 
aims to improve the cure rate in multifocal dis-
ease by performing surgical resection on resect-
able tumors and RFA on unresectable lesions [35]. 
A strategy for tumors >3 cm is to perform trans
arterial chemoembolization (TACE) to down-
size the tumors so they are more curable with 
RFA [36]. Thus far, randomized trial findings for 
this combination are modest. Morimoto et al. 
randomized 37 patients with solitary medium 
(3.1–5.0 cm) HCC lesions to RFA plus TACE or 
RFA alone [37]. After 3 years, the RFA plus TACE 
group had a statistically significant advantage in 
local tumor control, but not in overall survival. 
Wang et al. randomized 83 patients, of whom 
59% had lesions >3 cm, to RFA plus TACE or 
RFA alone [38]. The RFA plus TACE group had 
a statistically significant advantage in ‘quality 
of life’, but not in recurrence rate. Yang et al. 
randomized 36 patients with large (>5 cm) HCC 
lesions to RFA plus TACE or RFA alone  [39]. 
The two groups did not differ significantly in 
either relapse rate or overall survival. A frequent 
suggestion for tumors >3 cm in the literature is 
to perform RFA and then to administer a sys-
temic treatment to eradicate any residual tumor. 
Therapy with interferon [40,41], sorafenib (or other 
molecularly targeted agents once available) [42–44] 
and vitamin A or vitamin K analogs [45] have been 
recommended. In the simultaneous RFA plus 
LTLD approach, LTLD is administered systemi-
cally but rapidly concentrates in the liver, where 
it acts synergistically with RFA. 
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Introduction to LTLD
Chemistry
Lyso-thermosensitive liposomal doxorubicin is 
the first heat-activated formulation of liposomal 
doxorubicin. The active drug in LTLD is doxo-
rubicin hydrochloride. Doxorubicin consists of 
a naphthacenequinone nucleus linked through 
a glycosidic bond at ring atom 7 to an amino 
sugar, daunosamine. The chemical formula is 
C

27
H

29
NO

11
∙HCl and the molecular weight is 

579.99 Da. LTLD combines doxorubicin with 
lyso-thermosensitive liposomes that are made 
from three synthetic phospholipids: 1,2-dipal-
mitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-
2-hydroxy-sn-glycero-3-phosphocholine and 
1,2-distearoyl-sn-glycero-3-phosphoethanol-
amine-N-methoxypolyethylene-glycol-2000. 
LTLD is manufactured as stable doxorubicin-
loaded liposomes, which are stored as a frozen 
solution [Celsion Corp., Unpublished Data].

Pharmacodynamics
For single LTLD doses, the plasma half-life 
(mean ± standard deviation of 24 patients) is 
18.52 ± 8.36 h. Initial evaluation of two cycles 
of LTLD, 21 days apart, suggests that there does 
not appear to be any appreciable accumulation 
of doxorubicin between LTLD infusions [Celsion 

Corp., Unpublished Data].

Pharmacokinetics & metabolism
The major portion of exposure to LTLD (~95% 
of the liposomal doxorubicin plasma area under 
the curve [AUC]

0-∞) occurs during the first 6 h 
following the infusion, establishing this time 
period as optimal for application of RFA. Most 
of the free doxorubicin exposure also occurs dur-
ing the first 6 h (87.9% of the free doxorubicin 
AUC

0-∞). Free doxorubicin represents 43.6% of 
the total doxorubicin AUC

0-∞. For both liposomal 

and free doxorubicin, maximum plasma concen-
tration occurs just before the end of the 30-min 
infusion [Celsion Corp., Unpublished Data].

Clinical efficacy
Phase I studies
A 24-subject trial (nine with HCC and 15 with 
metastatic liver tumors from nine other primary 
sites) has been completed. A total of 15 (62.5%) 
of the 24 subjects had tumors >3.0 cm [Celsion 

Corp., Unpublished Data]. Treatment failure was 
operationally defined as objective disease progres-
sion and/or initiation of an alternative anticancer 
therapy. There was a statistically significant 
(p = 0.038) LTLD dose–response effect: median 
time to treatment failure for patients receiving at 
least the maximum tolerated dose of 50 mg/m2 
was 374 days, while that for patients receiving less 
than 50 mg/m2 was 80 days. Time to treatment 
failure was significantly associated with LTLD 
dose but not with tumor size (≤3 cm or >3 cm), 
tumor type (HCC or metastatic liver cancer) or 
RFA type (open surgical or percutaneous) (Table 1). 
There were three subjects at the 60 mg/m2 dose 
level. None of these three subjects experienced 
treatment failure; they were censored at 122, 283 
and 337 days. Furthermore, there were four sub-
jects with tumors >5 cm in the trial. Of these, the 
two subjects treated at <50 mg/m2 experienced 
treatment failure at 25 and 93 days, respectively, 
while the two subjects treated at ≥50 mg/m2 expe-
rienced treatment failure at 261 and 374 days, 
respectively [Celsion Corp., Unpublished Data]. These 
very limited data in large liver lesions are again 
suggestive of a LTLD dose–response relationship.

Phase II studies
Owing to promising Phase I results, the devel-
opers of LTLD worked with the US FDA and 
proceeded directly into Phase III testing. 

Box 1. Radiofrequency ablation-based combination therapies to increase the 
hepatocellular carcinoma cure rate.

Surgery for resectable tumors and RFA for unresectable tumors (efficacy additive)
n	RFA plus partial hepatectomy [35]

Precede RFA with local treatment to downsize tumor (efficacy additive)
n	TACE plus RFA [36–39]

Follow RFA with systemic therapy to eradicate any residual tumor (efficacy additive)
n	RFA plus interferon [40,41]

n	RFA plus sorafenib (or newer molecularly targeted agents) [42–44]

n	RFA plus vitamin analogs [45]

Simultaneous RFA and heat-enhanced, organ-specific chemotherapy 
(efficacy synergistic)
n	RFA plus lyso-thermosensitive liposomal doxorubicin [47]
RFA: Radiofrequency ablation; TACE: Transarterial chemoembolization.
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Phase III studies
A randomized, double-blind, dummy-con-
trolled, multicenter Phase  III trial (‘HEAT 
study’) is underway, comparing RFA/LTLD 
with RFA alone among 600  patients with 
unresectable HCC. Child–Pugh class A or B 
patients are eligible, except that both ascites 
and encephalopathy are exclusionary. Eligible 
patients can have no more than four HCC 
lesions with at least one ≥3.0  cm and none 
>7.0 cm in maximum diameter. However, if 
a patient has a large lesion (5.0–7.0 cm), any 
other lesions must be less than 5.0 cm. In both 
arms, RFA may be performed percutaneously, 
laparoscopically���������������������������������� ���������������������������������or surgically, per the investiga-
tors’ clinical judgment. Patients in the combi-
nation arm will receive a single 30-min intra
venous infusion of LTLD at 50 mg/m2, starting 
15 min before RFA; the RFA-only arm patients 
will receive a dummy infusion. Progression-free 
survival is the primary end point. Secondary 
end points include overall survival, time to local 
recurrence and time to a clinically significant 
deterioration in patient self-reported symptoms. 
The National Cancer Institute of the USA has 
recommended the HEAT study as a priority 
clinical trial for HCC [46].

Lyso-thermosensitive liposomal doxorubicin 
is not approved for use yet. However, this piv-
otal trial has randomized 556 of the 600 HCC 

subjects at the time of writing this article. It is 
expected that the Phase III trial will produce 
data robust enough to test the hypothesis that 
LTLD in combination with RFA could increase 
the cure of medium/large HCC.

Safety & tolerability
The maximum tolerated dose of LTLD was 
determined to be 50 mg/m2 in the Phase I trial, 
based on two dose-limiting toxicities (grade 3 
alanine aminotransferase increase and grade 4 
neutropenia) at a dose of 60 mg/m2 [Celsion 

Corp., Unpublished Data]. LTLD was not associ-
ated with either hand–foot syndrome or with 
congestive heart failure. The most common 
LTLD grade 3+ adverse events (affecting ≥5% 
of patients) were aspartate aminotransferase 
abnormalities (40.0%), alanine aminotrans-
ferase abnormalities (32.7%), neutropenia 
(29.1%), leukopenia (12.7%) and lympho-
penia (9.1%). Very few of the abnormalities 
in liver function were associated with LTLD. 
The most common LTLD drug-related 
adverse events (affecting ≥5% of patients) 
were alopecia (36.4%), neutropenia (32.7%), 
leukopenia (20.0%), decreased hemoglobin 
(18.2%), fatigue (14.5%), nausea (10.9%), 
thrombocytopenia (9.1%), decreased ejection 
fraction (9.1%), anorexia (7.3%), taste altera-
tion (5.5%) and fever (5.5%) (Table 2). All of the 

Table 1. Phase I radiofrequency ablation/lyso-thermosensitive liposomal 
doxorubicin time to treatment failure by primary site, tumor size, radiofrequency 
ablation type and lyso-thermosensitive liposomal doxorubicin dose.

Factor Failed Censored Median TTF (days) p-value

Primary site

Liver 7 2 355 0.2227

Other† 13 2 64

Tumor size‡

≤3.0 cm 6 2 156 0.4135

>3.0 cm 14 1 86

RFA type

Open surgical 6 1 188 0.4315

Percutaneous 14 3 80

LTLD dose

<50 mg/m2 15 0 80 0.0380

≥50 mg/m2 5 4 374
Source data are from the clinical study report [Celsion Corp., Unpublished Data] and were extracted as of 5 February 
2008. Treatment failure is operationally defined as disease progression and/or initiation of an alternative anticancer 
therapy. This is a conservative way to assess efficacy, since the 15 patients with other primary sites might 
progress and/or begin alternative treatment for that primary or for a baseline metastatic site other than the liver. 
Patients not experiencing treatment failure are censored as of their last reported on-study date. For each factor, TTFs 
are computed by the product-limit method [48] and compared by the two-tailed log-rank test [49]. No adjustments are 
made for multiple comparisons.
†There were a total of nine other primary sites.
‡The maximum tumor diameter for one patient was not reported.
LTLD: Lyso-thermosensitive liposomal doxorubicin; RFA: Radiofrequency ablation; TTF: Time to treatment failure.
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Table 2. Frequency listing of adverse events while on lyso-thermosensitive liposomal doxorubicin.

AE Lyso-thermosensitive liposomal doxorubicin (n = 55)

Any AE, n (%) Grade 3 or more AE, n (%) Drug-related AE, n (%) Serious AE, n (%)

Metabolic/laboratory symptoms

AST, serum glutamic oxaloacetic 
transaminase

28 (50.9) 22 (40.0) 1 (1.8) 0 (0.0)

ALT, serum glutamic pyruvic transaminase 28 (50.9) 18 (32.7) 1 (1.8) 0 (0.0)

Serum albumin – low (hypoalbuminemia) 10 (18.2) 0 (0.0) 0 (0.0) 0 (0.0)

Serum sodium – high (hypernatremia) 7 (12.7) 1 (1.8) 0 (0.0) 0 (0.0)

Serum potassium – high (hyperkalemia) 6 (10.9) 2 (3.6) 0 (0.0) 0 (0.0)

Creatine phosphokinase 5 (9.1) 1 (1.8) 0 (0.0) 0 (0.0)

Alkaline phosphatase 4 (7.3) 1 (1.8) 0 (0.0) 0 (0.0)

Serum glucose – high (hyperglycemia) 3 (5.5) 1 (1.8) 0 (0.0) 0 (0.0)

Serum phosphate – low 
(hypophosphatemia)

3 (5.5) 2 (3.6) 0 (0.0) 0 (0.0)

Serum potassium – low (hypokalemia) 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Blood and lymphatic system disorders

Neutropenia/granulocytopenia  
(ANC/AGC)

18 (32.7) 16 (29.1) 18 (32.7) 0 (0.0)

Decreased hemoglobin 13 (23.6) 1 (1.8) 10 (18.2) 0 (0.0)

Leukocytes (decrease in total WBCs) 11 (20.0) 7 (12.7) 11 (20.0) 0 (0.0)

Thrombocytopenia 9 (16.4) 2 (3.6) 5 (9.1) 1 (1.8)

Lymphopenia 5 (9.1) 5 (9.1) 1 (1.8) 0 (0.0)

Gastrointestinal disorders

Nausea 12 (21.8) 0 (0.0) 6 (10.9) 0 (0.0)

Anorexia 8 (14.5) 0 (0.0) 4 (7.3) 0 (0.0)

Vomiting 7 (12.7) 0 (0.0) 2 (3.6) 0 (0.0)

Constipation 6 (10.9) 0 (0.0) 0 (0.0) 0 (0.0)

Diarrhea 4 (7.3) 1 (1.8) 2 (3.6) 0 (0.0)

Mucositis/stomatitis oral cavity 3 (5.5) 0 (0.0) 2 (3.6) 0 (0.0)

Taste alteration (dysgeusia) 3 (5.5) 0 (0.0) 3 (5.5) 0 (0.0)

Constitutional symptoms

Fatigue (asthenia, lethargy and malaise) 14 (25.5) 0 (0.0) 8 (14.5) 0 (0.0)

Weight loss 7 (12.7) 0 (0.0) 0 (0.0) 0 (0.0)

Fever (without neutropenia) 5 (9.1) 0 (0.0) 3 (5.5) 1 (1.8)

Insomnia 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Skin and subcutaneous tissue disorders

Alopecia 21 (38.2) 0 (0.0) 20 (36.4) 0 (0.0)

Pain

Abdomen NOS 10 (18.2) 2 (3.6) 0 (0.0) 0 (0.0)

Joint 5 (9.1) 2 (3.6) 0 (0.0) 0 (0.0)

Back 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Bone 3 (5.5) 1 (1.8) 0 (0.0) 0 (0.0)

Extremity – limb 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Muscle 3 (5.5) 2 (3.6) 0 (0.0) 0 (0.0)

Chest/thorax NOS 3 (5.5) 1 (1.8) 0 (0.0) 0 (0.0)

Throat/pharynx/larynx 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Hepatobiliary disorders

Bilirubin (hyperbilirubinemia) 9 (16.4) 1 (1.8) 0 (0.0) 0 (0.0)
AEs occurring in at least 5% of patients (liver, breast or prostate cancer) treated with lyso-thermosensitive liposomal doxorubicin using targeted application of heat, 
either by radiofrequency ablation or microwave (as of 1 April 2008). 
AE: Adverse event; AGC: Absolute granulocyte count; ALT: Alanine aminotransferase; ANC: Absolute neutrophil count; AST: Aspartate aminotransferase; NOS: Not 
otherwise specified; WBC: White blood cell. 
Data taken from [Celsion Corp., Unpublished Data].
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ejection fraction decreases were drug-related 
but none were serious or grade 3+ [Celsion Corp., 

Unpublished Data]. These drug-related events 
are consistent with the adverse event profile of 
systemic doxorubicin. As noted earlier, with 
RFA plus LTLD therapy, high concentrations 
of doxorubicin are deposited in tumors, but 
some is released to circulate as free doxorubicin.

Comparison with other agents for HCC 
tumors >3 cm

The clinical benefit of the RFA plus LTLD 
combination is hypothesized to be an increased 
chance of cure of medium/large HCC lesions. 
The clinical benefit of the standard-of-care 
treatments for medium/large HCC (TACE or 
sorafenib) is limited to only some increase in 
survival. Currently, the role of RFA alone as 
a curative treatment for HCC >3 cm remains 
uncertain because of high recurrence rates. By 
adding LTLD, there is a potential to reduce 
recurrence and enhance the curative efficacy 

of RFA for HCC >3 cm, but this has to be 
corroborated by the data from the ongoing 
Phase III trial.

All of the proposed RFA-based combination 
therapies to increase the HCC cure rate are 
hypothesized to have a mainly additive efficacy. 
The RFA plus LTLD combination is hypoth-
esized to have a synergistic efficacy, since both 
the tumor specificity and the antitumor activity 
of LTLD are enhanced by the heat of RFA.

Conclusion & future perspective
As LTLD is a liposome, it rapidly concentrates 
in the liver, where it permeates HCC lesions and 
their vasculature. The heat of RFA furthers this 
process and very quickly releases doxorubicin in 
the heated area. At the same time, hyperther-
mia increases the cytotoxicity of doxorubicin, 
producing a synergistic interaction. 

If its curative and synergistic potential is 
borne out in the Phase III HEAT study, a ratio-
nal future strategy for HCC lesions >3 cm is to 

Table 2. Frequency listing of adverse events while on lyso-thermosensitive liposomal doxorubicin.

AE Lyso-thermosensitive liposomal doxorubicin (n = 55)

Any AE, n (%) Grade 3 or more AE, n (%) Drug-related AE, n (%) Serious AE, n (%)

Pulmonary/upper respiratory disorders

Dyspnea (shortness of breath) 7 (12.7) 0 (0.0) 0 (0.0) 0 (0.0)

Infections

Urinary tract NOS 5 (9.1) 1 (1.8) 1 (1.8) 1 (1.8)

Hepatobiliary infection 3 (5.5) 2 (3.6) 1 (1.8) 0 (0.0)

Renal/genitourinary disorders

Urinary retention 5 (9.1) 0 (0.0) 0 (0.0) 1 (1.8)

Bladder spasms 3 (5.5) 0 (0.0) 2 (3.6) 0 (0.0)

Incontinence, urinary 3 (5.5) 0 (0.0) 0 (0.0) 0 (0.0)

Hemorrhage

Urinary NOS 5 (9.1) 0 (0.0) 1 (1.8) 0 (0.0)

General cardiac symptoms

Decreased ejection fraction 5 (9.1) 0 (0.0) 5 (9.1) 0 (0.0)

Hypertension 4 (7.3) 0 (0.0) 0 (0.0) 0 (0.0)

Hypotension 4 (7.3) 0 (0.0) 0 (0.0) 0 (0.0)

Musculoskeletal symptoms

Muscle weakness – generalized 3 (5.5) 0 (0.0) 1 (1.8) 0 (0.0)

Lymphatic disorders

Edema – limb 4 (7.3) 0 (0.0) 0 (0.0) 0 (0.0)

Neurological disorders

Mood alteration: depression 5 (9.1) 0 (0.0) 0 (0.0) 0 (0.0)

Dizziness 4 (7.3) 0 (0.0) 1 (1.8) 0 (0.0)
AEs occurring in at least 5% of patients (liver, breast or prostate cancer) treated with lyso-thermosensitive liposomal doxorubicin using targeted application of heat, 
either by radiofrequency ablation or microwave (as of 1 April 2008). 
AE: Adverse event; AGC: Absolute granulocyte count; ALT: Alanine aminotransferase; ANC: Absolute neutrophil count; AST: Aspartate aminotransferase; NOS: Not 
otherwise specified; WBC: White blood cell. 
Data taken from [Celsion Corp., Unpublished Data].
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employ RFA plus LTLD as a front-line therapy. 
TACE, sorafenib or another molecularly tar-
geted agent, or one of the other investigational 
RFA-based combination therapies, can be used 
as second-line or third-line treatments, if needed. 

Plans to study combinations of LTLD with 
other thermal ablative modalities such as high-
intensity focused ultrasound are being contem-
plated. The RFA plus LTLD combination also 
has great potential as a front-line therapy for 
colorectal liver metastases, but this requires a 
separate clinical trial. 

Executive summary

Mechanism of action
n	Lyso-thermosensitive liposomal doxorubicin (LTLD; ThermoDox® [Celsion Corp., MD, USA]) is designed for use with radiofrequency 

ablation (RFA) and consists of the heat-enhanced cytotoxic anthracycline antibiotic doxorubicin within a heat-activated liposome.
n	LTLD is administered intravenously but, because it is a liposome, rapidly concentrates in the liver and spleen. Since tumors have much 

higher microvascular permeability than normal tissues, LTLD accumulates in liver tumors.
n	When LTLD is heated by RFA, a high concentration of doxorubicin is released into the tumor and tumor margins.
n	Doxorubicin’s cytotoxic mechanism of action and its ability to bind to DNA and inhibit nucleic acid synthesis is enhanced by hyperthermia.

Pharmacokinetic properties
n	Approximately 95% of the liposomal doxorubicin plasma area under the curve occurs during the first 6 h following infusion, 

establishing this time period as optimal for application of RFA. The plasma half-life (mean ± standard deviation) is 18.52 ± 8.36 h.

Clinical efficacy
n	A statistically significant LTLD dose–response effect for time to treatment failure was found in Phase I.

Safety & tolerability
n	Dosage and administration:

–	 Adult: 50 mg/m2 LTLD infused intravenously over 30 min, with RFA initiated within 15 min of starting the infusion. All RFA procedures 
should be completed within 3 h.

–	 Pediatric: The safety and efficacy of LTLD has not been studied in children.

n	Precautions:
–	 Administer steroids and multiple histamine receptor blockade beginning 24 h before LTLD to prevent acute infusion reaction.

n	Side effects:
–	 Hematological: neutropenia is the dose-limiting toxicity; leukopenia, lymphopenia, anemia and thrombocytopenia have been reported.

–	 Cardiovascular: decreased ejection fraction affects <10% of subjects; unlike free (nonliposomal) doxorubicin, congestive heart failure 
is not reported.

–	 Gastrointestinal: nausea affects approximately 10% of subjects.
–	 Dermatological: alopecia affects approximately one out of three subjects; unlike some other liposomal doxorubicin formulations, 

hand–foot syndrome is not reported.
–	 Other: fatigue affects approximately 15% of patients.

Regulatory affairs
n	LTLD is an investigational drug now in Phase III study for treatment of hepatocellular carcinoma lesions >3.0 cm in size.
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